5 research outputs found

    The role of species composition in the emergence of alternate vegetation states in a temperate rainforest system

    Get PDF
    Context: Forest systems are dynamic and can alternate between alternative stable states in response to climate, disturbance and internal abiotic and biotic conditions. Switching between states depends on the crossing of critical thresholds and the establishment of feedbacks that drive (and maintain) changes in ecosystem functioning. The nature of these thresholds and the workings of these feedbacks have been well-researched, however, the factors that instigate movement toward and across a threshold remain poorly understood. Objectives: In this paper, we explore the role of species composition in initiating ecosystem state change in a temperate landscape mosaic of fire-prone and fire-sensitive vegetation systems.Methods: We construct two 12-kyr palaeocecological records from two proximal (230 m apart) sites in Tasmania, Australia, and apply the Alternative Stable States model as a framework to investigate ecosystem feedbacks and resilience threshold dynamics. Results: Our results indicate that, in this system, invasion by pyrogenic Eucalyptus species is a key factor in breaking down negative (stabilising) feedbacks that maintain pyrophobic sub-alpine rainforest.Conclusions: We conclude that the emergence of an alternative stable pyrogenic state in these relic rainforest systems depends on the extent of pyrophytic species within the system. These findings are critical for understanding resilience in forest ecosystems under future climate and land management changes and are relevant to fire-adapted cool-temperate ecosystems globally

    Development of a southern hemisphere subtropical wetland (Welsby Lagoon, south-east Queensland, Australia) through the last glacial cycle

    Get PDF
    Continuous records of terrestrial environmental and climatic variability that extend beyond the Last Glacial Maximum (LGM) in Australia are rare. Furthermore, where long records do exist, interpretations of climate and ecological change can be hampered by marked changes in sedimentary environment which, in turn, affect the taphonomy of palaeoecological remains. As a consequence, in order to determine how wetland systems responded to climatic and environmental changes, we first need to understand how their depositional environment changed through time. Here we document the development of freshwater Welsby Lagoon, south-east Queensland, from a 12.7 m sediment sequence with a basal age of ca. 130,000 years. We present a variety of proxies reflecting change within the wetland. Carbon and nitrogen concentrations and carbon and nitrogen isotope ratios are used to infer the source of organic matter. However, the nitrogen limited nature of the catchment soils and presence of the colonial algae Botryococcus meant that organic material with C:N ≥ 20 is likely to be derived from autochthonous sources rather than terrestrial sources. A combination of photosynthetic pigments, plant macrofossils, aquatic pollen and sedimentary lignin was used to identify the sources of organic matter and the changing nature of this wetland. Since its formation, Welsby Lagoon has undergone a progressive change from an open-water, algae and cyanobacteria dominated, freshwater lacustrine system, to an aquatic macrophyte-dominated palustrine swamp after ca. 40 ka. It did not revert to lacustrine conditions during the Holocene, despite what is widely viewed as an increase in the regional moisture balance, most likely due to continual infilling of the wetland with sediment. With so few records of terrestrial change throughout MIS3 and MIS4, adequately understanding the development of sites like Welsby Lagoon is imperative to advancing our knowledge of this important environmental and cultural period in Australia's history, which encompasses events such as the extinction of megafauna and human colonisation of the continent

    The potential for rapid determination of charcoal from wetland sediments using infrared spectroscopy

    No full text
    Wetland sediments archive information about past terrestrial ecosystem change including variations in fire occurrence and terrestrial carbon fluxes. The charcoal content of sediments is important for understanding past fire regimes, as well as the role this recalcitrant carbon plays in the global carbon cycle. Infrared (IR) spectroscopy provides a rapid, non-destructive and cost effective method for simultaneously analysing numerous organic and inorganic sediment properties. The use of IR spectroscopy is well developed for determining concentrations of total organic carbon (TOC), total nitrogen (TN), biogenic silica and carbonate in lacustrine sediments. In soil science IR spectroscopy is also routinely used to determine charcoal content, however the potential for analysing charcoal content from lacustrine sediments has yet to be investigated. Here we develop IR spectroscopy and partial least squares regressions (PLSR) to predict the charcoal and TOC content of an organic, 130,000 year old sediment sequence from North Stradbroke Island (Minjerribah), Australia. Charcoal concentrations used for model development were derived using both traditional palaeoecological area measures (cm2 g−1) and solid state 13C nuclear magnetic resonance (13C NMR) of poly-aryl structures. The IR PLSR models yielded significant correlations for the two charcoal methodologies (area measurements, R2 = 0.57, p < .05; 13C NMR, R2 = 0.70, p < .05). We additionally find a very strong, significant, correlation for TOC (R2 = 0.92, p < .05), consistent with previous studies. Hence, IR is a promising tool for determining the charcoal content of lacustrine sediments, particularly for first-order sample screening, as part of a multi-proxy framework. IR spectroscopy can therefore provide a reliable and rapid technique for the initial investigation of fir
    corecore